DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion criteria to build, experiment, and properly scale your generative AI concepts on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled versions of the designs also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses support discovering to enhance reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key differentiating feature is its support learning (RL) step, which was used to refine the design's reactions beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adapt more efficiently to user feedback and objectives, eventually enhancing both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, indicating it's equipped to break down complex inquiries and factor through them in a detailed manner. This assisted thinking process allows the design to produce more accurate, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually caught the industry's attention as a flexible text-generation model that can be integrated into numerous workflows such as representatives, rational thinking and data analysis tasks.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion specifications, allowing efficient inference by routing inquiries to the most pertinent specialist "clusters." This technique allows the design to concentrate on different issue domains while maintaining overall effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more effective designs to imitate the behavior and of the larger DeepSeek-R1 design, using it as a teacher model.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend deploying this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid harmful material, and examine models against crucial security criteria. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create numerous guardrails tailored to different use cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 design, higgledy-piggledy.xyz you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit increase, develop a limit boost demand and connect to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, avoid harmful material, and assess models against key security criteria. You can execute security measures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic flow includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the model's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following areas demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 design.
The design detail page supplies essential details about the design's abilities, pricing structure, and implementation standards. You can discover detailed usage directions, consisting of sample API calls and code bits for integration. The design supports various text generation tasks, consisting of content creation, code generation, and question answering, using its reinforcement finding out optimization and CoT thinking abilities.
The page likewise includes deployment alternatives and licensing details to help you get begun with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, select Deploy.
You will be triggered to configure the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of instances, get in a number of instances (in between 1-100).
6. For Instance type, choose your instance type. For ideal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can set up advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service role consents, and encryption settings. For a lot of utilize cases, the default settings will work well. However, for production implementations, you may want to review these settings to line up with your organization's security and compliance requirements.
7. Choose Deploy to start using the design.
When the deployment is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive user interface where you can try out different triggers and change model criteria like temperature and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum results. For example, material for reasoning.
This is an excellent way to explore the model's reasoning and text generation abilities before incorporating it into your applications. The playground provides immediate feedback, helping you understand how the model reacts to different inputs and letting you fine-tune your triggers for optimum outcomes.
You can quickly test the design in the play ground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example demonstrates how to perform inference utilizing a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends out a demand to generate text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 practical techniques: utilizing the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both methods to assist you choose the method that finest matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to develop a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The model internet browser shows available models, with details like the provider name and model capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each model card reveals key details, including:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if appropriate), suggesting that this design can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the model card to view the model details page.
The model details page includes the following details:
- The design name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you deploy the model, it's advised to review the design details and license terms to validate compatibility with your use case.
6. Choose Deploy to continue with release.
7. For Endpoint name, use the immediately produced name or produce a custom one.
- For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, get in the variety of instances (default: 1). Selecting appropriate instance types and counts is important for expense and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
- Review all setups for accuracy. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to release the model.
The release process can take numerous minutes to complete.
When implementation is total, your endpoint status will alter to InService. At this point, the design is prepared to accept reasoning demands through the endpoint. You can keep an eye on the implementation progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is total, you can conjure up the model utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Tidy up
To prevent undesirable charges, complete the steps in this area to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the design using Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace deployments. - In the Managed deployments section, find the endpoint you want to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're deleting the proper implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build innovative solutions using AWS services and accelerated calculate. Currently, he is concentrated on developing strategies for fine-tuning and enhancing the reasoning performance of big language models. In his leisure time, Vivek takes pleasure in hiking, viewing motion pictures, and trying various foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building services that assist clients accelerate their AI journey and unlock service value.