Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Contribute to GitLab
  • Sign in
T
trabahopilipinas
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 16
    • Issues 16
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Berenice Coombes
  • trabahopilipinas
  • Issues
  • #5

Closed
Open
Opened Feb 22, 2025 by Berenice Coombes@berenicecoombe
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library developed to help with the development of reinforcement knowing algorithms. It aimed to standardize how environments are specified in AI research study, making released research study more easily reproducible [24] [144] while offering users with a simple user interface for interacting with these environments. In 2022, new developments of Gym have actually been relocated to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support knowing (RL) research study on video games [147] using RL algorithms and research study generalization. Prior RL research focused mainly on optimizing representatives to fix single tasks. Gym Retro provides the ability to generalize between video games with comparable principles but different looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot representatives initially lack knowledge of how to even stroll, however are given the goals of learning to move and to push the opposing representative out of the ring. [148] Through this adversarial learning procedure, the agents discover how to adjust to changing conditions. When a representative is then removed from this virtual environment and positioned in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had found out how to stabilize in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competition between agents might produce an intelligence "arms race" that might increase an agent's capability to operate even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a team of five OpenAI-curated bots used in the competitive five-on-five video game Dota 2, that discover to play against human players at a high ability level entirely through trial-and-error algorithms. Before becoming a team of 5, the very first public demonstration happened at The International 2017, the yearly premiere champion competition for the game, where Dendi, an expert Ukrainian gamer, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had found out by playing against itself for two weeks of real time, surgiteams.com which the learning software was a step in the direction of producing software that can deal with intricate jobs like a cosmetic surgeon. [152] [153] The system uses a form of support learning, as the bots discover over time by playing against themselves numerous times a day for months, and are rewarded for actions such as killing an enemy and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a full team of 5, and they were able to defeat teams of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against expert players, however ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the ruling world champs of the video game at the time, hb9lc.org 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' final public look came later on that month, where they played in 42,729 total games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot player shows the difficulties of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has demonstrated making use of deep support learning (DRL) agents to attain superhuman competence in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses device finding out to train a Shadow Hand, a human-like robotic hand, to manipulate physical things. [167] It discovers completely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI dealt with the item orientation problem by using domain randomization, a simulation approach which exposes the student to a variety of experiences instead of trying to fit to truth. The set-up for Dactyl, aside from having movement tracking cameras, also has RGB cameras to permit the robotic to control an arbitrary object by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could solve a Rubik's Cube. The robot was able to solve the puzzle 60% of the time. Objects like the Rubik's Cube present complicated physics that is harder to design. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by using Automatic Domain Randomization (ADR), a simulation technique of generating progressively harder environments. ADR differs from manual domain randomization by not needing a human to define randomization varieties. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI models developed by OpenAI" to let developers call on it for "any English language AI job". [170] [171]
Text generation

The company has popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")

The initial paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his associates, and released in preprint on OpenAI's site on June 11, 2018. [173] It demonstrated how a generative design of language might obtain world knowledge and procedure long-range reliances by pre-training on a varied corpus with long stretches of contiguous text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language model and the successor to OpenAI's original GPT model ("GPT-1"). GPT-2 was announced in February 2019, with just restricted demonstrative versions initially launched to the general public. The full variation of GPT-2 was not immediately launched due to issue about possible abuse, consisting of applications for composing phony news. [174] Some specialists revealed uncertainty that GPT-2 presented a considerable risk.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to identify "neural fake news". [175] Other scientists, such as Jeremy Howard, cautioned of "the technology to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the total version of the GPT-2 language design. [177] Several sites host interactive presentations of various instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose learners, highlighted by GPT-2 attaining cutting edge precision and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not additional trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It avoids certain concerns encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language design and the successor to GPT-2. [182] [183] [184] OpenAI specified that the full version of GPT-3 contained 175 billion criteria, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 models with as couple of as 125 million specifications were also trained). [186]
OpenAI specified that GPT-3 prospered at certain "meta-learning" tasks and might generalize the purpose of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer learning between English and Romanian, and between English and German. [184]
GPT-3 dramatically improved benchmark results over GPT-2. OpenAI warned that such scaling-up of language designs could be approaching or coming across the essential ability constraints of predictive language models. [187] Pre-training GPT-3 required several thousand petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained model was not right away launched to the general public for issues of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month complimentary private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in private beta. [194] According to OpenAI, the design can produce working code in over a lots shows languages, the majority of successfully in Python. [192]
Several issues with glitches, design defects and security vulnerabilities were mentioned. [195] [196]
GitHub Copilot has actually been implicated of releasing copyrighted code, with no author attribution or license. [197]
OpenAI announced that they would terminate assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They revealed that the updated innovation passed a simulated law school bar exam with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could also read, examine or generate as much as 25,000 words of text, and write code in all major forum.batman.gainedge.org shows languages. [200]
Observers reported that the iteration of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based iteration, with the caution that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is also efficient in taking images as input on ChatGPT. [202] OpenAI has actually to expose various technical details and statistics about GPT-4, such as the accurate size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and launched GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained state-of-the-art results in voice, multilingual, and vision criteria, setting brand-new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller sized version of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly beneficial for business, start-ups and designers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have been created to take more time to think of their reactions, leading to higher precision. These designs are particularly effective in science, coding, and thinking jobs, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI revealed o3, the follower of the o1 thinking model. OpenAI likewise unveiled o3-mini, a lighter and faster variation of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security scientists had the opportunity to obtain early access to these models. [214] The design is called o3 instead of o2 to prevent confusion with telecoms companies O2. [215]
Deep research study

Deep research study is an agent developed by OpenAI, revealed on February 2, 2025. It leverages the capabilities of OpenAI's o3 design to carry out extensive web browsing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools made it possible for, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to evaluate the semantic resemblance in between text and images. It can significantly be used for image category. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that produces images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to analyze natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of an unfortunate capybara") and generate matching images. It can develop pictures of realistic items ("a stained-glass window with a picture of a blue strawberry") in addition to items that do not exist in truth ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an upgraded variation of the design with more sensible results. [219] In December 2022, OpenAI released on GitHub software application for Point-E, a brand-new fundamental system for transforming a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more powerful design much better able to produce images from complex descriptions without manual timely engineering and render intricate details like hands and text. [221] It was released to the public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can create videos based upon short detailed prompts [223] along with extend existing videos forwards or backwards in time. [224] It can generate videos with resolution as much as 1920x1080 or 1080x1920. The optimum length of created videos is unknown.

Sora's advancement team called it after the Japanese word for "sky", to signify its "endless creative capacity". [223] Sora's technology is an adjustment of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos in addition to copyrighted videos certified for that purpose, but did not reveal the number or the exact sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, mentioning that it could generate videos approximately one minute long. It also shared a technical report highlighting the methods utilized to train the model, and the design's abilities. [225] It acknowledged a few of its drawbacks, including battles simulating intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "impressive", but noted that they must have been cherry-picked and might not represent Sora's common output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, notable entertainment-industry figures have actually revealed significant interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry expressed his astonishment at the technology's ability to generate practical video from text descriptions, mentioning its prospective to transform storytelling and material development. He said that his enjoyment about Sora's possibilities was so strong that he had chosen to pause strategies for expanding his Atlanta-based film studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition model. [228] It is trained on a large dataset of varied audio and is likewise a multi-task model that can perform multilingual speech recognition in addition to speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can produce tunes with 10 instruments in 15 designs. According to The Verge, a song produced by MuseNet tends to begin fairly but then fall into chaos the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were used as early as 2020 for the web psychological thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a bit of lyrics and outputs song samples. OpenAI specified the songs "show local musical coherence [and] follow conventional chord patterns" but acknowledged that the tunes lack "familiar larger musical structures such as choruses that repeat" and that "there is a significant space" in between Jukebox and human-generated music. The Verge stated "It's technologically outstanding, even if the outcomes seem like mushy variations of songs that might feel familiar", while Business Insider mentioned "surprisingly, some of the resulting songs are memorable and sound genuine". [234] [235] [236]
Interface

Debate Game

In 2018, OpenAI introduced the Debate Game, which teaches devices to dispute toy issues in front of a human judge. The purpose is to research study whether such an approach might help in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every significant layer and nerve cell of eight neural network designs which are typically studied in interpretability. [240] Microscope was created to examine the functions that form inside these neural networks easily. The designs consisted of are AlexNet, VGG-19, various variations of Inception, and various variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is a synthetic intelligence tool constructed on top of GPT-3 that supplies a conversational interface that enables users to ask questions in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: berenicecoombe/trabahopilipinas#5