Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Contribute to GitLab
  • Sign in
J
joy-match
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 1
    • Issues 1
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Garland Osby
  • joy-match
  • Issues
  • #1

Closed
Open
Opened Apr 09, 2025 by Garland Osby@gvzgarland7790
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to build, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support finding out to enhance thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial distinguishing function is its support knowing (RL) action, which was used to refine the design's actions beyond the basic pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and goals, eventually boosting both relevance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, suggesting it's equipped to break down intricate inquiries and factor through them in a detailed manner. This directed thinking process enables the model to produce more accurate, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT capabilities, aiming to create structured responses while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has captured the market's attention as a versatile text-generation design that can be integrated into different workflows such as agents, sensible thinking and information analysis jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion criteria, enabling effective reasoning by routing inquiries to the most appropriate expert "clusters." This technique permits the design to focus on various issue domains while maintaining overall efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient models to mimic the behavior and thinking patterns of the larger DeepSeek-R1 model, using it as an instructor model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid hazardous material, and assess designs against essential security requirements. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce numerous guardrails tailored to various usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation increase, create a limit boost request and reach out to your account team.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For guidelines, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, avoid harmful material, and evaluate models against crucial safety criteria. You can execute safety steps for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to examine user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After receiving the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the final outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 design.

The design detail page offers necessary details about the design's capabilities, pricing structure, and execution standards. You can find detailed usage guidelines, including sample API calls and code bits for combination. The model supports various text generation tasks, consisting of material creation, code generation, and question answering, using its reinforcement discovering optimization and CoT reasoning abilities. The page also consists of implementation choices and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be triggered to configure the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, go into a variety of circumstances (in between 1-100). 6. For example type, pick your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, archmageriseswiki.com you can configure innovative security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function authorizations, and encryption settings. For many use cases, the default settings will work well. However, for production implementations, you may want to review these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive user interface where you can try out different prompts and change design criteria like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for ideal results. For instance, material for reasoning.

This is an outstanding method to explore the model's thinking and text generation capabilities before incorporating it into your applications. The playground provides immediate feedback, helping you comprehend how the model reacts to various inputs and letting you tweak your triggers for optimal outcomes.

You can quickly test the model in the play area through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform reasoning using a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually developed the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up inference specifications, and sends a request to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 practical approaches: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both methods to assist you pick the approach that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model internet browser shows available designs, with details like the provider name and design capabilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card shows crucial details, consisting of:

- Model name

  • Provider name
  • Task (for example, Text Generation). Bedrock Ready badge (if appropriate), indicating that this design can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the design

    5. Choose the model card to see the model details page.

    The design details page consists of the following details:

    - The design name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you release the design, it's recommended to examine the model details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the instantly created name or create a custom one.
  1. For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of circumstances (default: 1). Selecting proper instance types and counts is crucial for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to release the model.

    The deployment procedure can take several minutes to finish.

    When release is complete, your endpoint status will change to InService. At this moment, the model is all set to accept reasoning demands through the endpoint. You can monitor the implementation development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the deployment is complete, you can invoke the design using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that shows how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is offered in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To prevent undesirable charges, complete the steps in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the design utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases.
  5. In the Managed releases section, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the correct implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business develop innovative services using AWS services and sped up compute. Currently, he is concentrated on developing strategies for fine-tuning and enhancing the reasoning performance of big language designs. In his leisure time, Vivek takes pleasure in hiking, seeing films, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing options that assist consumers accelerate their AI journey and unlock service value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: gvzgarland7790/joy-match#1